Google

Translate blog

fredag 19 april 2024

Ännu förstår vi inte norrskenet.

 


De energirika elektroner som driver norrskenet har en rik och mycket dynamisk struktur som vi ännu inte helt förstår. Mycket av det vi vet om dessa elektroners rörelser kommer från instrument som har fundamentala begränsningar i sin förmåga att mäta flera energier samtidigt med hög tidsupplösning. För att övervinna denna begränsning använder NASA ett innovativt tillvägagångssätt för att nu utveckla instrument som kommer att förbättra vår mätkapacitet med mer än en storleksordning – vilket bör avslöja en mängd ny information om vad som fysiskt sker i ett norrsken.

Dagens elektroninstrument förlitar sig på en teknik som kallas elektrostatisk avböjning, vilket kräver att man ändrar spänning för att kunna välja olika energislag av elektronhändelser som ska mätas. Dessa instrument har varit med på många rymduppdrag och har tillhandahållit nästan alla elektronmätningar som gjorts inuti norrsken. De fungerar utmärkt när man observerar på tidsskalor på sekunder eller till och med ner till cirka en tiondels sekund, men de kan i grunden inte observera ner till mindre tidsskalor (millisekunder) på grund av den tid det tar att svepa genom skilda spänningsfält.

Vid utformningen av APES (Acute Precipitating Electron Spectrometer ) (det nya instrument som snart ska börja användas) var man tvungen att göra en stor kompromiss. För att magnetfältsgeometrin ska fungera korrekt kan instrumentet endast observera i en riktning. Detta koncept fungerar bra om målet bara är att mäta de utfällande (nedåtgående) elektronerna i norrskenet som träffar atmosfären. Vi vet dock att elektroner i norrskenet även rör sig i andra riktningar; Faktum är att dessa elektroner innehåller mycket information om andra fysikaliska processer som sker längre ut i rymden.

För att möjliggöra mätning av elektroner i mer än en riktning utvecklade Goddard-teamet instrumentkonceptet APES-360. För att skapa APES-360-designen använde teamet samma funktionsprincip som används i APES, men uppdaterade systemet för att få en riktningsgeometri med flera möjligheter som täcker ett 360-graders synfält över 16 olika sektorer. Teamet var tvunget att övervinna flera tekniska utmaningar för att utveckla APES-360-konceptet. I synnerhet var elektronikkonstruktionen tvungen att rymma många fler anoder (laddningsdetekteringsytor) och tillhörande kretsar på en liten yta.

Prototypen APES-360 som för närvarande byggs kommer att testas och kalibreras vid NASA:s Geophysics Laboratory vid NASA:s Goddard Space Flight Center och kommer att finnas på en sond som ska sändas in i ett aktivt norrsken vintern 2025. Detta uppdrag kommer att ge data inifrån norrskenet som ska användas för att validera instrumentets prestanda och ge information till framtida designförbättringar.

Bild pxhere.com

torsdag 18 april 2024

Så kan jorden bestå när solens tid är ute

 


För närvarande förbränner solen väte i sin kärna, men när detta är förbrukat om ca 5 miljarder år kommer solen att expandera och bli en röd jättestjärna , därefter dras den samman och blir en vit dvärgstjärna till en komprimerad massa och en radie på ca10 km. En massa och där en tesked väger ca en miljard ton.

Om jorden "slukas" av den röda solen eller lyckas undkomma genom att den trycks längre ut får tiden utvisa. Men den blir i båda fallen obeboelig, atmosfären försvinner och ytan förbränns totalt.

De inre planeterna Merkurius och Venus kommer dock med största sannolikhet att krossas och uppslukas av solen vilket beskrivs i en ny artikel som publicerats nyligen i Monthly Notices of the Royal Astronomical Society (MNRAS). 

Forskaren Dr Amornrat Aungwerojwit vid Naresuan University i Thailand beskriver: "Tidigare forskning har visat att då asteroider, månar och planeter kommer nära vita dvärgstjärnor (vår sol slutar som en sådan), sliter den enorma gravitationen från dessa stjärnor sönder små planeters materia till mindre och mindre bitar."

Det innebär att eventuella rester efter solens slukande av dem i dess röda fas försvinner in i den vita dvärgstjärnan efter att materian slitits itu när solen blivit en vit dvärg.

Kollisioner mellan dessa bitar maler dem så småningom till stoft, som sedan faller in i den vita dvärgen, vilket gör det möjligt för forskare att avgöra vilken typ av material de ursprungliga planetkropparna bestod av. De söker svar på detta vid undersökning av redan bildade vita dvärgstjärnor Se tre ex här.

Hur vårt solsystem ser ut om fem miljarder år efter att ha studerat vad som händer med planetsystem som vårt eget när deras värdstjärnor blivit vita dvärgar blev slutsatsen att om jorden uppslukades av solen, tillsammans med Venus och Merkurius, skulle det lämna Mars och de fyra gasjättarna - Jupiter, Saturnus, Uranus och Neptunus - i omloppsbana runt vad som i slutändan skulle bli en vit dvärg.

Bild vikipedia. Jorden, bilden tagen av Apollo 17

onsdag 17 april 2024

En gång vände månen ut och in på sig själv

 


För ungefär 4,5 miljarder år sedan kraschade en liten planet in i den unga jorden och det slungades då ut smält sten från kraschen ut i rymden. Långsamt drogs den smälta stenen samman av gravitation och rörelse, svalnade, stelnade och blev till vår måne. Detta scenario för hur jordens måne kom till är det som de flesta forskare i stort sett överens om (men inte hur processen såg ut, teorin kallas Theiateorin).

Månen bildades enligt teorin relativt snabbt och täcktes av ett hett globalt magmahav. När den smälta stenen gradvis svalnade och stelnade bildades månens mantel och den ljusa skorpa vi ser då månens yta vid fullmåne. Men djupt under ytan var den unga månen helt ur balans. Datamodeller tyder på att det sista av bottensatsen i magmahavet kristalliserades till täta mineraler, exempelvis ilmenit, ett mineral som innehåller titan och järn.

"Då dessa tunga mineraler var massivare än manteln skedde en gravitationell instabilitet och man kan förvänta sig att dessa tunga mineral sjönk djupare in i månens inre", beskriver Weigang Liang, som ledde forskningen som en del av sitt doktorandarbete vid LPL (Lunar planetary laboratory vid university of Arizona).

På något sätt under årtusendena som följde sjönk det täta materialet in i det inre, blandades med manteln, smälte och återvände upp till ytan som titanrika lavaströmmar som vi i dag ser på  ytan.

"Vår måne vände bokstavligen ut och in på sig själv", beskriver medförfattaren till studien  LPL-professorn Jeff Andrews-Hanna. "Men det har funnits få fysiska bevis för  det exakta händelseförloppet under denna  fas av månens historia och det finns en hel del oenighet i detaljerna om vad som hände."

Sjönk detta material när det bildades lite i taget eller på en gång efter det att månen  hade stelnat? Sjönk den in i det inre globalt och steg sedan upp på motsatta sidan? Sjönk det i en stor klump eller i flera mindre blobbar?

I studien jämförde författarna simuleringar av ett sjunkande ilmenitrikt lager med en uppsättning linjära gravitationsanomalier. Anomalier vilka upptäcktes av NASA:s GRAIL-uppdrag, vars två rymdfarkoster kretsade runt månen mellan 2011 och 2012 och mätte små variationer av dess gravitationskraft. Dessa linjära anomalier omger ett vidsträckt mörkt område på månens sida mot oss som täcks av vulkaniska flöden som kallas mare (latin för "hav").

För mer och utförligare redovisning av detta händelseschema se följande länk från University of Arizona 

Bild vikipedia. En illustratörs skildring av den hypotetiska effekten av då planeten Theia och jorden krockade och månen bildades.

tisdag 16 april 2024

En överraskande gravitationsvåg

 


Forskare vid Institute of Cosmology and Gravitation ICG har upptäckt en anmärkningsvärd gravitationsvåg som kan bli nyckeln till att lösa ett kosmiskt mysterium.

Upptäckten kommer från den senaste uppsättningen resultat som tillkännagavs den5 april av LIGO-Virgo-KAGRA samarbetet. Ett samarbete som består av mer än 1 600 forskare från hela världen, inklusive ovan nämnda ICG och som syftar till att hitta gravitationsvågor att använda i grundforskning.

I maj 2023, strax efter början av den fjärde LIGO-Virgo-KAGRA-observationanalysen upptäcktes i LIGO Livingston-detektorn i Louisiana i USA, en gravitationsvåg från en kollision mellan vad som troligen var en neutronstjärna och ett kompakt (okänt) objekt med en massa på 2,5 till 4,5 gånger vår sols.

Både neutronstjärnor och svarta hål är kompakta objekt efter resterna av massiva stjärnexplosioner (supernovor). Det som gör ovan signal som fått beteckningen GW230529 intressant är massan hos det okända objektet. Det ligger inom en intervall mellan de tyngsta kända neutronstjärnorna och de lättaste svarta hålen.

Framtida upptäckter av liknande händelser, särskilt de som åtföljs av utbrott av elektromagnetisk strålning kan kanske bidra till att lösa gåtan vad det var. Då händelsen endast upptäcktes av en gravitationsvågsdetektor är det svårt att bedöma om den är verklig eller om något annat störde LIGO (något instrument utom eller något i detektorn ex) .

Dr Gareth Cabourn Davies, forsknings programvaruingenjör vid ICG, har utvecklat de verktyg som används för att söka efter händelser som denna i en detektor. – Att bekräfta händelser genom att flera detektorer upptäcker samma sak ger signifikans för händelsen. Detektorerna är våra mest kraftfulla verktyg för att skilja signaler från naturligt brus. Genom att använda lämpliga modeller för bakgrundsbrus kan vi bedöma en händelses ursprung även när vi inte har någon annan detektor som backar upp det vi har sett (det är dock alltid lättare att accepterna en händelse om flera detektorer upptäcker den). Även om gravitationsvågssignalen inte gav tillräckligt med information för att med säkerhet avgöra om det kompakta objektet var en neutronstjärna eller ett svart hål är det troligt att det lättare objektet är en neutronstjärna och det tyngre objektet ett svart hål.

Men objektet är ännu inte fullt ut förstått eller förklarat utan bör ännu ses som en icke löst gåta.

Bild vikipedia Gravitationen håller solsystemets planeter i omloppsbana kring solen. Notera: Bilden är inte skalenlig.

måndag 15 april 2024

Magnetaren XTE J1810-197 utmanar vår kunskap om snabba radioskurutbrott

 


Citerat fritt från vikipedia "En magnetar är en neutronstjärna med ett starkt magnetfält, cirka 1000 gånger starkare fält än hos en vanlig neutronstjärna. Magnetarer har existerat i teorin sen början av 90-talet men det var först  1998 som teorierna bekräftades då en magnetar fick ett utbrott (och teorin bekräftades) som passerade genom vårt solsystem. När dessa utbrott sker utsöndras enorma mängder röntgenstrålning och gammastrålning. slut citat.

En internationell forskargrupp under ledning av Gregory Desvignes vid Max Planck-institutet för radioastronomi i Bonn i Tyskland, har använt radioteleskopen Effelsberg och Jodrell Bank för att observera magnetaren XTE J1810-197 – en starkt magnetiserad och ultratät neutronstjärna (8100 ljusår bort i riktning mot stjärnbilden skytten) – strax efter dess ökade röntgenaktivitet och radiostrålningsreaktivering.

Denna ökning dämpades på en tidsskala av några månader, vilket utmanade teorier    som används för att förklara ursprunget till de ej ännu förstådda och upprepande snabba radiostrålningsblixtarna. Tillsammans med kollegor från Jodrell Bank Centre for Astrophysics och Kavli Institute for Astronomy & Astrophysics inspekterar forskare från Max Planck-institutet för radioastronomi (MPIfR) regelbundet några magnetarer. Magnetaren XTE J1810-197 kastade ut radiostrålning i december 2018, strax efter att den förstärkta röntgenstrålningen påbörjades efter ett tioårigt lugn. Det var  efter denna händelse som  forskare började att regelbundet inspektera magnetarer. 

Forskarna inledde en intensiv observationskampanj efter  händelsen 2018och lade märke till några mycket systematiska förändringar i radiostrålens egenskaper, nämligen dess polarisation, vilket avslöjade en förändring i orienteringen (riktningen) av magnetarens radiostrålutsläpp i förhållande till jorden.

 Forskarna tillskrev detta fri precession, en effekt som uppstår från en liten asymmetri i magnetarens struktur, vilket gör att den vinglar runt som en snurra. Till deras förvåning dämpades den fria precessionen snabbt under de kommande månaderna och upphörde så småningom. Att precession (en mekanisk funktion hos snurror (exempelvis jorden), där rotationsaxeln vinglar (pendlar) lite i rymden.) försvinner över tid motsäger  teorin  att radioblixtar  över tid kan förklaras av precesserande magnetarer.

"Vi förväntade oss att se vissa variationer i polarisationen av denna magnetars emission då vi kände till detta från andra magnetarer", minns Gregory Desvignes från MPIfR, huvudförfattare till studien. Men vi hade inte förväntat oss att dessa variationer skulle vara så systematiska utan att de skulle följa exakt det beteende som skulle orsakas av stjärnans vinglande.

Patrick Weltevrede från University of Manchester tillägger: "Våra upptäckter har endast varit möjliga tack vare många års  övervakning av denna magnetar med radioteleskopen i Jodrell Bank och Effelsberg. Vi var tvungna att vänta i över ett decennium innan den började producera radiostrålning, men när den väl gjorde det gjorde den ingen besviken."

– Dämpad precession av magnetarer kan kasta ljus över neutronstjärnornas inre struktur, vilket i slutändan är relaterat till vår grundläggande förståelse av fenomenet, tillägger Lijing Shao vid Pekings universitet.

Hur saker och ting visar sig och kan förklaras och förstås är viktigt för att förstå vad universum är och vad vi är och vår plats i detta.

Bild vikipedia. Magnetfältets utbredning i en magnetar.

söndag 14 april 2024

För att söka efter mörk materia kan neutronstjärnor vara till hjälp

 


Fritt citerat från vikipedia; ”En neutronstjärna är resultatet av ett av flera möjliga slut för en stjärna. När en stjärna i slutet av sin existens  stöter bort sina yttre lager inträffar en gravitationskollaps genom att  stjärnans kvarvarande inre delar imploderar. Om stjärnan är så stor att den kvarvarande massan motsvarar 1,4–3 solmassor sker en supernova. Återstoden blir en neutronstjärna som består av tätt packade neutroner, och övrigt material från supernovan”. slut citat. En massa jämförbar med solens – komprimeras  till en radie på 10 km och en tesked neutronstjärnematerial av detta väger ca en miljard ton!

Hittills har forskare  dragit slutsatsen att något som fått beteckningen mörk materia existerar men aldrig observerat den utan endast kunnat söka vidare efter bevis på vad det är. Att bevisat detektera partiklar av mörk materia i experiment på jorden verkar som en omöjlig uppgift då växelverkan mellan partiklar av mörk materia och vanlig materia är ytterst sällsynt (teoretiskt).

För att söka efter dessa otroligt sällsynta signaler behövs en mycket stor detektor – kanske så stor att det är ogörligt att bygga en tillräckligt stor sådan på jorden. Naturen erbjuder dock ett alternativ i form av neutronstjärnor – en neutronstjärna kan fungera som den ultimata detektorn till att finna mörk materia (om den finns och kan finnas).

I en neutronstjärna som är en kollapsad kärna av en stjärna är gravitationen så hårt hoppressad att protoner och elektroner kombineras och bildar neutroner. Neutronstjärnor är "kosmiska laboratorier" som kanske kan göra det möjligt att studera hur mörk materia beter sig under extrema förhållanden som inte kan replikeras på jorden.

Mörk materia växelverkar (teoretiskt) endast mycket svagt med vanlig materia. Till exempel kan den passera genom ett ljusår av bly (cirka 10 biljoner kilometer) utan att stoppas på vägen. Otroligt nog är dock neutronstjärnor så täta att de kan fånga upp alla partiklar av mörk materia som passerar genom dem (teoretiskt). Teoretiskt sett ska partiklarna av mörk materia kollidera med neutroner i stjärnan, förlora energi och fastna i gravitationen där. Med tiden skulle partiklar av mörk materia ackumuleras i stjärnans kärna. Detta förväntas då värma upp gamla, kalla neutronstjärnor till en nivå som kan vara inom räckhåll för framtida observationer. I extrema fall kan ansamlingen av mörk materia leda till att stjärnan kollapsar till ett svart hål.

Det innebär att neutronstjärnor kan göra det möjligt att undersöka vissa typer av mörk materia (den ansamlade och värmealstringen av detta) som skulle vara svåra eller omöjliga att observera i experiment från jorden. För mer om denna intressanta teori se denna länk från university of Melbourne 

Forskargruppen bestod av forskare från ARC Centre of Excellence for Dark Matter Particle Physics, inklusive Dr Sandra Robles, Michael Virgato och professor Nicole Bell från University of Melbourne, Dr Giorgio Busoni från Max Planck-institutet för kärnfysik i Tyskland och Theo Motta och professor Anthony Thomas AC från University of Adelaide.

Bild vikipedia teoretisk modell av en neutronstjärna.

lördag 13 april 2024

Nu har spåren efter den kraftigaste solstormen i modern tid hittats i Lappland

 


Carringtonhändelsen 1859 är den största registrerade solstormen under de senaste två århundradena. Den sågs som vita ljusbloss i en gigantisk solfläcksgrupp och resulterade i bränder vid telegrafstationer och störningar i geomagnetiska mätningar, samt norrsken i tropikerna. En solstorm motsvarande Carrington-händelsen i modern tid skulle störa el- och mobilnät och orsaka stora problem för satellit- och navigationssystem vilket skulle leda till problem för bland annat flygtrafiken.

Solstormar  mindre än Carringtonsolstormen kan numera  undersökas med mätinstrument och satelliter, medan än större solstormar i det förgångna  kan undersökas till exempel genom att mäta kolhalten i träds årsringar.

Hittills har det däremot inte varit möjligt att studera specifikt medelstora solstormar som Carrington-händelsen, som inte har inträffat i modern tid med hjälp av konventionell radiokolteknik. Den nya studien öppnar nu upp för ett potentiellt nytt sätt att undersöka frekvensen av stormar av Carrington-storlek vilket kan bidra till att bättre förbereda sig för framtida hot.

Vid undersökningen som gjorts av Helsingfors universitet, Naturresursinstitutet och Uleåborgs universitet upptäcktes för första gången tecken på en ökning av radiokolhalterna efter Carrington-stormen i träds årsringar. Tidigare har spår av radioaktivt kol bara upptäckts från betydligt kraftigare solstormar i det förflutna. Resultaten tolkades med hjälp av en numerisk modell för produktion och transport av radioaktivt kol som utvecklats av forskare vid Uleåborgs universitet.

"Denna dynamiska modellen för koltransport i atmosfären har utvecklats särskilt för att beskriva geografiska skillnader i fördelningen av radioaktivt kol i atmosfären", beskriver forskardoktor Kseniia Golubenko från Uleåborgs universitet.

Det som var betydelsefullt och som beskrivs i den nyligen publicerade studien var hur radioaktiv kolhalt i träd i Lappland skilde sig från halten i träd på lägre breddgrader. De första mätningarna gjordes i Helsingfors universitets acceleratorlaboratorium, medan upprepade mätningar gjordes i två andra laboratorier för att minska risken för felresultat.

Upptäckten kan bidra till att bättre förstå atmosfärens dynamik och kolcykeln från tiden före människans utsläpp av fossila bränslen vilket möjliggör utvecklingen av allt mer detaljerade kolcykelmodeller.

"Det är möjligt att överskottet av radioaktivt kol som orsakades av soleruptionen i första hand transporterades till den lägre atmosfären på nordliga områden, tvärtemot den allmänna uppfattningen om detta slag av rörelser", funderar doktorand Joonas Uusitalo från Kronologiska laboratoriet. Den nyligen publicerade undersökningen genomfördes som ett samarbetsprojekt mellan Kronologiska laboratoriet vid Helsingfors universitet, institutionen för fysik och Naturresursinstitutet. Forskare från Uleåborgs universitet, Nagoya universitet, Yamagata universitet och ETH Zürich bidrog också till studien. Forskningen finansierades av Finlands forskningsråd, Suomen Kulttuurirahasto och Emil Aaltonens stiftelse.

Bild vikipedia Illustration av ett område av en stark solvind når jorden och ger upphov till en geomagnetisk storm som bland annat trycker ihop magnetosfären.